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MFIE Analysis and Design of Ridged Waveguides

Weimin Sun, Member, IEEE, and Constantine A. Balanis, Fellow, IEEE

Abstract—This paper presents a unified approach for the analy-
sis and design of ridged waveguides by a magnetic field integral
equation (MFIE) formulation. The MFIE approach allows accu-
rate and complete solution via a simple numerical implementation
of pulse basis functions. The emphasis of the paper is oriented to
the design of ridged waveguides for applications in microwave
components and systems, rather than to details of numerical
algorithms. Erroneous bandwidth estimates due to neglect of the
TE,, mode in previous works have been corrected; and various
useful design curves on cutoff frequency, bandwidth, attenuation,
and waveguide impedance are provided. The proposed theory is
verified by comparison to exact closed-form solutions and other
published results.

I. INTRODUCTION

IDGED waveguides have many applications in mi-

crowave and antenna systems because of their unique
characteristics of low cutoff frequency, wide bandwidth, and
low impedance compatible with coaxial cables. The research
endlessly continues, as reported in the literature. In the
early pioneering works, the transverse resonance technique
[1]-[5] was primarily used to find the dominant cutoff
frequencies and generate design curves. This method involved
the approximation of the ridge step discontinuity susceptance
and the assumption of simple transverse field distribution,
which in turn limited the accuracy particularly when the
waveguide has a narrow ridge thickness or narrow ridge gap.
Moreover, the neglect of the TE;; mode led to erroneous
bandwidth estimates for waveguides.

Later, more analyses [6]—[11] were performed by represent-
ing the transverse field as a sum of harmonic functions, and
"matching tangential fields on the aperture of the ridge edge.
This technique is accurate in its nature, however, it is limited
in use to rectangular waveguides with rectangular thick ridges.
Among various analysis techniques, there are the variational
method [12] and the spectral domain method [13], {14], which
is very successful in dealing with fin-line loaded waveguides.
These two methods also partly rely on the use of harmonic
expansion functions for the transverse fields; thus, they are
not flexible for treating arbitrarily shaped ridges.

In recent years, the surface integral equation approach has
been proposed to sclve propagation modes in waveguides
with arbitrary cross sections [15]-[17]. It is demonstrated
that the surface integral equation is robust in formulation
and flexible for geometry modeling. In previous publications,
the integral equation analyses were generic ones, not specific
on ridged waveguides. Their subsequent numerical solutions
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Geometry of typical double-ridge (a) and single-ridged (b) wave-
guides.

Fig. 1.

were not thorough in the extent of meeting a normal design
need. Furthermore, the proposed electric field integral equation
(EFIE) has higher order derivative in the formulation, and its
numerical counterpart is less efficient when compared to a
magnetic field integral equation (MFIE) formulation.

As the application of ridged waveguide is increasing in mi-
crowave components and systems (such as a broadband filter,
ortho-mode transducer, impedance transformer, and broadband
microwave power feeding for either an antenna or ampli-
fier), accurate analysis and design of a ridged waveguide are
necessary.

In this paper, an MFIE technique is proposed to pursue
precise and complete solutions to ridged waveguide modes,
including cutoff frequency, bandwidth, -attenuation, and wave-
guide impedance. The use of MFIE allows simple numerical
implementation by using pulse basis functions, while it pro-
vides an improved numerical solution.

In Section II, an MFIE formulation is established and used
to calculate cutoff frequencies and surface modal currents of
both. TE and TM modes. After, it is shown that the field
distribution inside a ridged waveguide, its attenuation constant,
and waveguide impedance are determined from the solution
of the surface currents.

In Section III, standard ridgeless waveguides are first ana-
lyzed by the proposed theory to validate the formulation and
compare the numerical accuracy. To provide basic design
guidelines, several sets of parametric design curves are plotted
to illustrate the dependence of cutoff wavelength, waveguide
impedance, and attenuation constant on the ridge dimensions.
Lastly, several field distribution patterns of dominant modes
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are drawn in contour plots to show insight into the waveguide
modes.

II. FORMULATION

Based on equivalence principles, integral equations for
both electric and magnetic fields can be derived [18], [19].
However, in a waveguide with a uniform cross section, only
two-dimensional equations are necessary. On the inner surface
of a perfectly conducting waveguide, such as a ridged wave-
guide as shown in Fig. 1, the magnetic field can be represented
by the surface integral of the electric curtent density as

1
H(p) = 5= § 360 < (Vi+3B0Gd ()
2m J.
where p is the position vector in two-dimensional space, fc
is the circumferential contour integration, V; is the transverse
differential operator, 3, is the phase constant in the z direction,

% is the unit vector in the 2z direction, and
¢ =200 (VF=3lp-0) ®

with HSQ) being the Hankel function of the second kind, J
the electric surface current density, and & the wavenumber in
free space.

It is worthwhile to point out that since (1) modeis an
arbitrarily shaped waveguide, the following solution procedure
applies to waveguides with an arbitrary uniform cross section
and multiple ridges. Indeed, (1) is the formulation that can be
used to solve quadruple-ridged waveguides. The analysis on
the quadruple-ridged waveguides will be presented in a later

paper.

A. Determination of Cutoff Frequency

It can be shown that the MFIE of (1) is sufficient to
determine the cutoff frequencies of both T'EY and T'M modes
for a ridged waveguide. At cutoff, k¥ = k., 8, = 0; therefore,
(1) leads to

2rH(p) = j{.](p’) x ViGdl' 3)

¢

or
omi x J(p) + }{ J() x VIGdl' = 0 @

on the waveguide inner surface with a normal direction of 7.
The circumferential and axial components of (4), respectively,
are

2nJ.(p) +]§ (PN x V)G =0 ®)

oo

where ¢ is a unit vector in the tangential direction of the
waveguide wall.

Completing the vector manipulation, explicit integral equa-
tions of the circumferential and the axial surface current

—2nJ(p ExVvyadl =0 (6
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TABLE 1
NorRMALIZED CUTOFF WAVENUMBER koG OF
A RECTANGULAR WAVEGUIDE (b = 0.5a)

Mode k.a
exact MFIE

TFEy | 3.14159 3.14828

TEq; | 7.02481 7.02475

TE;; | 12,9531 12.9583

TEy3 | 19.1096 19.1099

TEy | 6.28319 6.28733

TE; | 8.88577 8.89259

TEj; | 14.0496 14.0546

TEqs {19.8692 19.8683

TEs5 | 9.42478 9.42747

TEs | 11.3272 11.3345

TFE3; | 15.7080 15.7049

TE4 | 12.5664 12.5673

TE4y | 14.0496 14.0532

TEg | 17.7715 17.7761

TEsq | 15.7080 15.7049

TEs | 16.9180 16.9209

TEs; | 20.1160 20.1206

TFEeo | 18.8496 18.8507

TEs | 19.8692 19.8683

TABLE II

NorMALIZED CUTOFF WAVENUMBER k.a OF A CIRCULAR WAVEGUIDE
Mode k.a Mode k.a
TEnn | Ref. [21] MFIE  Rel. (15] | 7Mmn | Rel. [21] MFIE  Ref. [15]
TE,; |1.84118 1.84202 1.8462 | TM, | 2.40482 2.40530 2.4111
TEy; |3.05424 3.05510 3.0645 | TMjp; |3.83171 3.83218 3.8416
TEs |4.20119 4.20171 4.2200 TMyn |5.13562 5.13616 5.1485
TE4 | 5.31755  5.31851 TMs |6.38016 6.38076
TEs; |6.41562 6.41689 TMy |7.58834  7.58901
TEg | 7.50127 7.50233 TMs | 877148 8.77221
TErn | 8.57784 8.53716 TMe | 9.93611  9.93691
TEs; |9.64742  9.64862 TMy | 11.0864 11.0872
TEoy |3.83170 3.83214 3.8422 | TM,; | 5.52007 5.52055 5.5346
TE;, |5.33144  5.33206 TMy, | 7.01559 7.01613
TE,;; }6.70613 6.70666 TMy, | 841724 8.41787
TE;; | 801524 8.01577 TMy; |11.0647 11.0655
TEs |9.28240 9.28304 TMse | 12,3386  12.3394
TEs; | 10,5199  10.5201 TMos |8.65372  8.65433
TEs | 117349  11.7358 TMy; | 10.1735  10.1742
TEgs | 7.01588  7.01609 TMpy | 117915 11.7923
TEs |8.53632 8.53702 TMyy | 133237 13.3246
TEs; | 11.3459 11,3466 TMyy | 14.7960  14.7969
TE;4 | 11.7060  10.7067
TFEqs | 131704 13.1711

densities are obtained at cutoff as

2.(p) — jke f T.(0) sin(f, %)
H (kelp - o/l =0 (7)

~ /
21:) = ke § To)sin 7, 0 ).
HP (kolp - p'dl' =0. (8

In (7) and (8), the sin(a, b) represents the sine function of
the angle between two unit vectors a and b. Equations (7)
and (8) are fundamental to determine the cutoff frequencies of
both TE and TM modes. Since, at cutoff, a TF mode only
supports circumferential surface current density, and a TM
mode only supports longitudinal current density, then either
(7) or (8) is required to determine the cutoff frequency of a
TFE or a TM mode.



SUN AND BALANIS: MFIE ANALYSIS AND DESIGN OF RIDGED WAVEGUIDES

B. Solution of Modal Current

Once the cutoff frequency of a waveguide mode is deter-
mined, the modal surface current can be obtained from the
solution of (1), if the magnetic field H on the left-hand side
of (1) is replaced by the surface current 7 x J, and (1) is
decomposed into £ and Z components as

/
22:(6) - ¢ Jt<p')sin(t", o ’f)-
c Ip —p |
HP (kelp - o)) dll = 0

©®)

and
27,(p) = jke § 7.5 sin{ £, L=LN HD (k| ~ o)) dl
2\P) — Jie z(p)SIH a]p_p,l 1 (clp pl)

+ B ]4 J(p!) cos (b, ) HP (o — p]) dll = 0. (10)

For a TE mode, when the operation frequency is above
cutoff, both the £ and 2 components of surface current density
will be excited. Equation (9) is used to obtain solution of J;
first, and (10) is subsequently used to determine .J,. However,
for a TM mode, only (10) is necessary to obtain solution of
J, because J; vanishes in a TAM mode.

C. Electric and Magnetic Field

When the surface current is determined, the magnetic field
inside the waveguide can be obtained from (1) via a simple
integration. Decomposing (1) into its rectangular components,
it can be written as

H, = % ]f [t;ﬂthHo(ch) +jkch%H1(ch)} dl
(11

H, = —% ]4 [t;ﬂthHo(ch) + jkch%Hl(ch)] dr’
12)
H, = —jic ]thz- (E’ X %)Hl(ch) i (13)

where ¢, and t;, are the z- and y-components of the unit vector
Az =z—2,Ay=y—y,and R = |p—p/|

In most applications, only the transverse electric field is of
interest. However, inside a conducting waveguide, the trans-

verse electric field is linearly proportional to the transverse

magnetic field. From general waveguide theory, the transverse
electric and magnetic field components can be expressed in
terms of the longitudinal components as

Ht - _Jﬁz/kzthz

TE Mode{ B, = —op/B.2 x Hy 14)
B, = —jﬁz/kzvth

™ Mode{ H, = —we/B,% x E, (15)

Thus, the transverse electric fields are related to the transverse
magnetic fields by

E, =wp/BzH,

TE Mode{ E, = —wu/ B H, (16)
E, =0./weH,

T™ Mode{ E, = — B, jwell, 17)
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Fig. 2. Normalized TE mode cutoff wavelength of a double-ridged wave-
guide with aspect ratio b/a = 0.5. (a) T E10, (b) T E29, (c) T Eso, () TEy:.
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D. Power Attenuation and Waveguide Iimpedance

In the design of a ridged waveguide component or system,
it is informative to know its power attenuation constant and
waveguide impedance. In previous works, analyses on the
attenuation and the impedance of a ridged waveguide were
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Fig. 4. Normalized TE mode cutoff wavelength of a single-ridged wave-
guide with aspect ratio b/a = 0.45. (a) T E10, (b) T'E2o.

not accurate and sufficient for use in waveguide design. With
the powerful and versatile MFIE formulation, it is conve-
nient to obtain accurate attenuation constants and waveguide

impedances.
The attenuation constant « is defined by
P, v
=— 18
a=_5 (18)
where

P. = Ei]{[JIle (19)
2 [+

is the surface conducting loss with surface resistance R, per
unit square, and

P:%Re/EXH*~ds (20)
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Fig. 5. Frequency bandwidth of a ridged waveguide (. cutoff wavelength
of the first dominant mode and A. cutoff wavelength of the second dominant
mode). (a) Double ridged, (b) single ridged.

is the power flux in the waveguide. It is a common practice to
define the waveguide impedance from a power consideration
as

V'OZ
T (21)
The same definition was also used in [1], [7], [9], [12], and
[14]. In (21), V, is the peak voltage across the ridge gap, and
can be evaluated by the integral

%:/%ﬂ.
Yy

Once the modal surface current density is known, the
tangential magnetic fields are obtained via (11)—(13), and in
turn the waveguide impedance and attenuation via (23) and
24).

Zpy =

22)

I1I. NUMERIAL RESULTS

- A simple numerical scheme utilizing pulse basis functions
and delta weighting functions is used in a Method of Moment
(MoM) [20] numerical solution. Following the established
theory and its numerical procedure, many numerical results
and design curves have been obtained. For brevity, only partial
results of ridged waveguides with typical aspect ratios are
presented here.

To validate the formulation and verify the accuracy of
the proposed method, the procedure was first applied to
ridgeless waveguides, rectangular and circular, with- known
exact solutions. The computed cutoff wavenumbers are listed
in Tables I and II, and are compared to exact closed-form
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Fig. 6. Normalized attenuation constant of a ridged waveguide (f. cutoff
frequency of T'F1p mode). (a) Double ridged, (b) single ridged.

solutions [21]. It is obseived that the computed normalized
cutoff wavenumbers of rectangular and circular waveguides
agree with the exact values up to 4 digits. However, those of
[15] in Table TI, via an EFIE formulation, agree only up to 2
and 3 digits. This comparison presumes that the same number
of basis functions is used. '

A. Cutoff Wavelength and Bandwidth

Since the ridged waveguides are used mostly to achieve
larger bandwidths, it is of interest to estimate the bandwidth.
The bandwidth defines the frequency range in which the
waveguide ‘only supports one propagation mode. Because the
second lowest mode in a rectangular waveguide with aspect
ratio b/a < 0.5 is the T Eso mode, the hybrid T Eao mode in a
ridged waveguide was assumed to be the second lowest in all
of previous works. Unfortunately, this is not always the case.
In fact, the TE;; may become the second lowest when the
ridge gap is narrow. It should be pointed out that the T'F1y
mode in this paper is the same as the T'Eyg trough mode in
[7], since the T'E1¢ trough mode is a transition form the T Eyy
mode in a ridgeless rectangular waveguide.

In Fig. 2(a)—(d), the normalized cutoff wavelength of a
double-ridged waveguide with an aspect ratio b/a = 0.5,
shown in Fig. 1, is plotted versus the geometry of the ridge.
The wavelength and the waveguide dimensions are normalized
with respect to the waveguide width a. The dashed llnes in
Fig. 2 represent the data by Hopfer [1]. It is apparent from the
data of Fig. 2 that the current theory is fairly consistent with
[1] of the transverse resonance approach on dominant cutoff
wavelengths. The cutoff wavelength of the 7'M7; mode for the
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(¢) T'E30, and (d) TE;y modes.
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Fig. 9. Electric field contour plots of T'Eyp mode in double-ridged waveguides with various s/a and d/b ratios.

same double-ridged waveguide is given in Fig. 3 to illustrate
that the 7'M mode has a shorter cutoff wavelength and is less
dominant than a T'F mode. Fig. 4(a)—(b) shows the dominant
cutoff wavelength of a single-ridged waveguide with aspect
ratio b/a = 0.45, where only the TEjo and T'Fpy modes
are presented. The available results of [1] are also compared,
although the curves of the T Eay mode were incomplete in [1].

It is found that in the case of double-ridged waveguide of
b/a = 0.5, the TEy; may become the second lowest mode
when the ridge gap d is less than 20 percent of the waveguide
width a and the ridge thickness s is less than 35 percent of a.
However, in the case of single-ridged waveguide with aspect
ratio b/a = 0.45, the T F1; has a higher cutoff frequency than
the T F39. Bandwidth curves are shown in Fig. 5(a) and (b)
for double- and single-ridged guides, respectively.

B. Attenuation and Impedance

In various ridged waveguide component or antenna feed
designs, knowledge of waveguide attenuation and waveguide
impedance is necessary. The waveguide attenuation constant
is shown in Fig. 6(a) and (b), where the attenuation constant «
defined in (20) is normalized with R, (wall surface resistance
per unit square), 1 (free space wave impedance), and @
(waveguide width). It is evident that smaller ridge gaps or
larger thicknesses lead to larger attenuation.

The waveguide impedance defined in (21) for both double-
and single-ridged waveguides is first computed at a fixed
frequency, by varying the ridge dimensions. Fig. 7(a) shows
the impedance of a double-ridged waveguide. The operation
frequency is fixed at /3 times of the T Eyy cutoff frequency.
The impedance can be substantially low if the ridge gap is
very narrow. Fig. 7(b) is the impedance of a single-ridged
waveguide at the same reference frequency.

C. Field Distribution

The task to pursue the solution of modal field distribution
at different frequencies with different ridge parameters is

certainly vast. Limited by the size of this paper, only a
few typical modal field patterns are presented here. The
contour plot technique is used to draw contour electric field
lines, as shown in Fig. 9(a)—(c), in which the center of the
contours represents the location of peak E-fields and dense
lines represent rapid variations of E-fields.

The E-field contours of the T E1g, T Fog, T Esg, and TE11
modes in a double-ridged guide are shown in Fig. (a)—(d)
where the ridge gap d and thickness s are 15 and 30 percent,
respectively, of the waveguide width a. The electric field of
the T Eyp is very concentrated between ridge gaps, while the
electric field of the T'F55 mode is distributed in two cavities.
It is also seen that T'Fyq is a trough mode. In order to see the
effect of the s/a and d/b ratios on the field patterns, Fig. 9
is provided to show the field distributions of 7'E1y mode in
various double-ridged waveguides.

IV. CoNCLUSION

The surface magnetic field integral equation is used to ana-
lyze ridged waveguides in an efficient way. The formulation
is flexible in handling various waveguide cross sections and
ridge shapes, and accurate in determining waveguide modes;
and it remains simple in numerical solution with pulse basis
functions.

In a double-ridged waveguide, the second lowest mode may
not be the 7' Fyy mode, as taken for granted previously, and
the bandwidth is estimated to be smaller in a waveguide with
narrow ridge gap, compared to existing results.

The ridged waveguide attenuation is proportional to the
ridge thickness, and inversely proportional to the ridge gap.
When the ridge gap d/b is less than 0.2 and the frequency is
well above cutoff (f > 1.73f¢), the attenuation increases only
slightly with frequency. However, the waveguide impedance
is proportional to the ridge gap, and inversely proportional to
the ridge thickness. A low impedance, which is compatible
with a coaxial cable, can be achieved by decreasing the ridge
gap d/b to less than 0.1. Unfortunately, a low impedance is
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always coupled with a high attenuation, and a tradeoff has to
be considered in design practice.

The multiridged and arbitrarily shaped waveguides can be
analyzed by the same technique. The formulation and numer-
ical results on general types of quadruple-ridged waveguides
(such as square, diagonal, and circular waveguides) will be
presented in a later publication.
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