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MFIE Analysis and Design of Ridged Waveguides
Weimin Sun, Member, IEEE, and Constantine A.

Abstract—This paper presents a unified approach for the analy-
sis and design of ridged waveguides by a magnetic field integral
equation (MFIE) formulation. The MFIE approach allows accu-
rate and complete solution via a simple numerical implementation
of pulse basis functions. The emphasis of the paper is oriented to
the design of ridged waveguides for applications in microwave
components and systems, rather than to details of numerical
algorithms. Erroueous bandwidth estimates due to neglect of the
TE11 mode in previous works have been corrected; and various
useful design cnrves on cutoff frequency, bandwidth, attenuation,
and wavegnide impedance are provided. The proposed theory is
verified by comparison to exact closed-form solutions and other
published results.
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guides.

RIDGED waveguides have many applications in mi-

crowave and antenna systems because of their unique

characteristics of low cutoff frequency, wide bandwidth, and
low impedance compatible with coaxial cables, The research Fig. 1. Geometryof typical double-ridge(a) and single-ridged(b) wave-

endlessly continues, as reported in the literature. In the
early pioneering works, the transverse resonance technique
[1]-[5] was primarily used to find the dominant cutoff
frequencies and generate design curves. This method involved
the approximation of the ridge step discontinuity susceptance
and the assumption of simple transverse field distribution,
which in turn limited the accuracy particularly when the

waveguide has a narrow ridge thickness or narrow ridge gap.
Moreover, the neglect of the Z’-E1l mode led to erroneous
bandwidth estimates for waveguides.

Later, more analyses [6]–[11] were performed by represent-
ing the transverse field as a sum of harmonic functions, and
matching tangential fields on the aperture of the ridge edge.
This technique is accurate in its nature, however, it is limited
in use to rectangular waveguides with rectangular thick ridges.

Among various analysis techniques, there are the variational

method [12] and the spectral domain method [13], [14], which
is very successful in dealing with fin-line loaded waveguides.
These two methods also partly rely on the use of harmonic

expansion functions for the transverse fields; thus, they are
not flexible for treating arbitrarily shaped ridges.

In recent years, the surface integral equation approach has
been proposed to solve propagation modes in waveguides
with arbitrary cross sections [15] – [17]. It is demonstrated
that the surface integral equation is robust in formulation
and flexible for geometry modeling. In previous publications,
the integral equation analyses were generic ones, not specific
on ridged waveguides. Their subsequent numerical solutions

were not thorough in the extent of meeting a normal design
need. Furthermore, the proposed electric field integral equation
(EFIE) has higher order derivative in the formulation, and its
numerical counterpart is less efficient when compared to a
magnetic field integral equation (MFIE) formulation.

As the application of ridged waveguide is increasing in mi-
crowave components and systems (such as a broadband filter,
ortho-mode transducer, impedance transformer, and broadband
microwave power feeding for either an antenna or ampli-
fier), accurate analysis and design of a ridged waveguide are
necessary.

In this paper, an MFIE technique is proposed to pursue

precise and complete solutions to ridged waveguide modes,
including cutoff frequency, bandwidth, attenuation, and wave-

guide impedance. The use of MFIE allows simple numerical
implementation by using pulse basis functions, while it pro-
vides an improved numerical solution.

In Section II, an MFIE formulation is established and used

to calculate cutoff frequencies and surface modal currents of
both TE and TM modes. After, it is shown that the field
distribution inside a ridged waveguide, its attenuation constant,
and waveguide impedance are determined from the solution
of the surface currents.

In Section III, standard ridgeless waveguides are first ana-
lyzed by the proposed theory to validate the formulation and
compare the numerical accuracy. To provide basic design
guidelines, several sets of parametric design curves are plotted
to illustrate the dependence of cutoff wavelength, waveguide
impedance, and attenuation constant on the ridge dimensions.
Lastly, several field distribution patterns of dominant modes
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are drawn in contour plots to show insight into the waveguide
modes,

II. FORMULATION

Based on equivalence principles, integral equations for
both electric and magnetic fields can be derived [18], [19].
However, in a waveguide with a uniform cross section, only

two-dimensional equations are necessary. On the inner surface
of a perfectly conducting waveguide, such as a ridged wave-
guide as shown in Fig. 1, the magnetic field can be represented
by the surface integral of the electric current density as

H(p) = : ~J(p)x (v; + .j@z2)Gd’ (1)

where p is the position vector in two-dimensional space, $C
is the circumferential contour integration, Vt is the transverse

differential operator, ~Z is the phase constant in the z direction,
2 is the unit vector in the z direction, and

(2)

‘2) being the Hankel function of the second kind, Jwith HO
the electric surface current density, and k the wavenumber in
free space.

It is worthwhile to point out that since (1) models an
arbitrarily shaped waveguide, the following solution procedure
applies to waveguides with an arbitrary uniform cross section
and multiple ridges. Indeed, (1) is the formulation that can be
used to solve quadruple-ridged waveguides. The analysis on
the quadruple-ridged waveguides will be presented in a later
paper.

A. Determination of Cutoff Frequency

It can be shown that the MFIE of (1) is sufficient to

determine the cutoff frequencies of both TE and TM modes
for a ridged waveguide. At cutoff, k = k., @Z= O; therefore,
(1) leads to

2TH(p) =
!

J(p’) X V:Gdl’ (3)
c

or

!2nii X ~(p) + J(p’) X V;Gdl’ = O (4)
c

on the waveguide inner surface with a normal direction of n.
The circumferential and axial components of (4), respectively,
are

27rc7z(p)+
{

~.(p’)$~(~ X V:)Gdl’ = O (5)

-2fiJt(P)+{Jt(P’)~ (~xv:)Gdz’=o (G)

where ~ is a unit vector in the tangential direction of the
waveguide wall.

Completing the vector manipulation, explicit integral equa-

TA13LE I
NORMALIZEDCUTOFFWAVBNUMBER,kCa OF

A RECMNGULAR WAVEGUIDE(b = O.5a)

Mode

TENI
TEII
TE,z
TE,s
TEz)
TE21
TEZZ
TEM
TEXI
TE31
TEw
TEdrI
TE41
TE42
TEF,o
TEw
TE52
TEa
TE6,

It=a
exact MFIE
3.14159 3.14828
7.02481 7.0247.5
12.9531 12.9583
19.1096 19.1099
6.28319 6.28733
8.88577 8.89259
14.0496 14.0546
19.8692 19.8683
9.42478 9.42747
11.3272 11.3345
15.7080 15.7049
12.5664 12.5673
14.0496 14.0532
17.7715 17.7761
15.7080 15.7049
16.9180 16.9209
20.1160 20.1206
18.8496 18.8507
19.8692 19.8683

TABLE II
NORMALIZEDCUTOFFWAVEIWMBERkca OFA CIRCULARWAVEGUIDE

Mode kta Mode k.a
TEmn Ref. [21] MFIE Ref. [15] TMmn Ref. [21] MFIE Ref. [15]
TEII 1.84118 1.84202 1.8462 TMc)l 2.40482 2.40530 2.4111
TEx 3.05424 3.05510 3.0645 TM1l 3.83171 3.83218 3.8416
TEx 4.20119 4.20171 4.2200 TM.z, 5.13562 5.13616 5.1485
TE*, 5.31755 5.31851 TM31 6.38016 6.38076
TE51 6.41562 6.41689 TM41 7.58834 7.58901
TEa 7.50127 7.50233 TM51 8.77148 8.77221
TEn 8.57784 8.53716 TM6, 9.93611 9.93691
TEs1 9.64742 9.64862 TM71 11.0864 11.0872
TEw 3.83170 3.83214 3.8422 TMOZ 5.52007 5.52055 5.5346
TEXZ 5.33144 5.33206 TMI> 7.01559 7.01613
TE22 6.70613 6.70666 TMn 8.41724 8.41787
TEs2 8.01524 8.01577 TM42 11.0647 11.0655
TE4* 9.28240 9.28304 TM5* 12.3386 12.3394
TESZ 10.5199 10.5201 TMOS 8.65372 8.65433
TE62 117349 11.7358 TM13 10.1735 10.1742
TE(x 7.01588 7.01609 TM04 11.7915 11.7923
TE,z 8.53632 8.53702 TMM 13.3237 13.3246
TE33 11.3459 11.3466 TMz4 14.7960 14.7969
TE14 11.7060 10.7067
TEM 13.1704 13.1711

densities are obtained at cutoff as

(7)H~2)(kC[P – p’1) di’ = O

2Jt(pj-jkc~Jt(pJsin@,&)

(8)H[2)(kClp – p’1) dl’ = O.

In (7) and (8), the sin(a, b) represents the sine function of
the angle between two unit vectors a and b. Equations (7)
and (8) are fundamental to determine the cutoff frequencies of
both TE and TM modes. Since, at cutoff, a TE mode only
supports circumferential surface current density, and a TM
mode only supports longitudinal current density, then either
(7) or (8) is required to determine the cutoff frequency of a

tions of the circumferential and the axial surface current TE or a TM mode,
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B. Solution of Modal Current

Once the cutoff frequency of a waveguide mode is deter-

mined, the modal surface current can be obtained from the

solution of (l), if the magnetic field EZ on the left-hand side
of (1) is replaced by the surface current n x J, and (1) is
decomposed into ~ and 2 components as

(9)Hj2)(kClp – p’1) dl’ = O

and

/
+ ~z ~t(p’) COS(;,ii’)~j2)(kclp– /J’\)dl’ = 0. (10)

c
For a TE mode, when the operation frequency is above

cutoff, both the ~ and .2 components of surface current density
will be excited. Equation (9) is used to obtain solution of Jt
first, and (10) is subsequently used to determine Jz. However,

for a TM mode, only (10) is necessary to obtain solution of

Jz because Jt vanishes in a TM mode.

C. Electric and Magnetic Field

When the surface current is determined, the magnetic field
inside the waveguide can be obtained from (1) via a simple
integration. Decomposing (1) into its rectangular components,
it can be written as

Hz=+
1[ 1@JtHo(hR) + jkcJz$@(k.R) dl’

c
(11)

HY = –:
J[ 1t@JtHo(LR) + jI&J. ~HI(k.R) dl’

c
(12)

where tjand t;are the x- and y-components of the unit vector

~’, Ax=x–x’, Ay=y–y’, and R= Ip–p’l.

In most applications, only the transverse electric field is of
interest. However, inside a conducting waveguide, the trans-

verse electric field is linearly proportional to the transverse
magnetic field. From general waveguide theory, the transverse
electric and magnetic field components can be expressed in
terms of the longitudinal components as

TE Mode
{

Ht = –jfiz/k:VtH%
Et = –W/L/~zi X Ht

(14)
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TM Mode
{

Et = –j~z/k~VtEz
Ht = –WE/fizi x Et

(15) Fig. 2, Normalized TE mode cutoff wavelength of a double-ridged wave-
guide with aspect ratio b/a = 0.5. (a) Z’EIO, (b) TE20, (c) TE30, (d) ~~11.

Thus, the transverse electric fields are related to the transverse
magnetic fields by D. Power Attenuation and Waveguide Impedance

TE Mode
{

E= = W/J/@HY
EY = –W/.L/~zHz

(16) In the design of a ridged waveguide component or system,
it is informative to know its power attenuation constant and

TM Mode
{

Ez = ~z/weHY
(17) waveguide impedance. In previous works, analyses on the

EY = –~z/weHz “ attenuation and the impedance of a ridged waveguide were
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Fig. 4. Normalized TE mode cutoff wavelength of a single-ridged wave-
guide with aspect ratio b/a = 0.45. (a) T1310, (b) TE20.

not accurate and sufficient for use in waveguide design. With
the powerful and versatile MFIE formulation, it is conve-
nient to obtain accurate attenuation constants and waveguide
impedances.

The attenuation constamt a is defined by

where

(18)

(19)

is the surface conducting loss with surface resistance R, per
unit square, and

/
P=~Re ExH”. ds

s
(20)
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(b)

Fig. 5. Frequency bandwidth of a ridged waveguide (Acl cutoff wavelength
of the first dominant mode and &2 cutoff wavelength of the second dominant
mode). (a) Double ridged, (b) single ridged,

is the power flux in the waveguide. It is a common practice to
define the waveguide impedance from a power consideration
as

~ _v/
pv

2P ‘
(21)

The same definition was also used in [1], [7], [9], [12], and

[14]. In (21), VO is the peak voltage across the ridge gap, and
can be evaluated by the integral

v~=
/

EY dl . (22)
Y

Once the modal surface current density is known, the
tangential magnetic fields are obtained via (1 1)–(13), and in
turn the waveguide impedance and attenuation via (23) and
(24).

III. NUMERIAL RESULTS

A simple numerical scheme utilizing pulse basis functions
and delta weighting functions is used in a Method of Moment
(MoM) [20] numerical solution. Following the established
theory and its numerical procedure, many numerical results
and design curves have been obtained. For brevity, only partial
results of ridged waveguides with typical aspect ratios are
presented here.

To validate the formulation and verify the accuracy of
the proposed method, the procedure was first applied to
ridgeless waveguides, rectangular and circular, with known
exact solutions. The computed cutoff wavenumbers are listed
in Tables I and II, and are compared to exact closed-form
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Fig. 6. Normalized attenuation constant of a ridged wavegnide (~, cutoff
frequency of TEIO mode). (a) Double ridged, (b) single ridged.

solutions [21]. It is observed that the computed normalized
cutoff wavenumbers of rectangular and circular waveguides
agree with the exact values up to 4 digits. However, those of
[15] in Table II, via an EFIE formulation, agree only up to 2

and 3 digits. This comparison presumes that the same number
of basis functions is used.

A. Cutoff Wavelength and Bandwidth

Since the ridged waveguides are used mostly to achieve
larger bandwidths, it is of interest to estimate the bandwidth.
The bandwidth defines the frequency range in which the
waveguide only supports one propagation mode. Because the
second lowest mode in a rectangular waveguide with aspect
ratio b/a <0.5 is the TE20 mode, the hybrid TE20 mode in a

ridged waveguide was assumed to be the second lowest in all

of previous works. Unfortunately, this is not always the case.

In fact, the TE1i may become the second lowest when the
ridge gap is narrow. It should be pointed out that the TE11
mode in this paper is the same as the TEIO trough mode in
[7], since the TEIO trough mode is a transition form the TE1l
mode in a ridgeless rectangular waveguide.

In Fig. 2(a)–(d), the normalized cutoff wavelength of a
double-ridged waveguide with an aspect ratio b/a = 0.5,

shown in Fig. 1, is plotted versus the geometry of the ridge.
The wavelength and the waveguide dimensions are normalized

with respect to the waveguide width a. The dashed lines in
Fig. 2 represent the data by Hopfer [1]. It is apparent from the
data of Fig. 2 that the current theory is fairly consistent with

[1] of the transverse resonance approach on dominant cutoff
wavelengths. The cutoff wavelength of the TM11 mode for the

0.9
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Fig. 7. TEIO mode waveguide impedance of a rklged waveguide (f. cutoff
frequency of TE1o mode). (a) Double ridged, (b) single ridged.

(a)

(b)

(d)

Fig. 8. Electrical field contour plots of a double-ridged waveguide (ridge
thickness s/a = 0.3 and ridge gap d/a = 0.15). (a) TEIo, (b) TEzo,
(c) TE30, and (d) T1711 modes.
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Fig. 9. Electric field contour plots of Tf310 mode in double-ridged waveguides with various s/a and d/b ratios.

same double-ridged waveguide is given in Fig. 3 to illustrate
that the TM mode has a shorter cutoff wavelength and is less
dominant than a TE mode. Fig. 4(a)–(b) shows the dominant

cutoff wavelength of a single-ridged waveguide with aspect

ratio b/a = 0.45, where only the TEIO and TE20 modes
are presented. The available results of [1] are also compared,
although the curves of the TE20 mode were incomplete in [1].

It is found that in the case of double-ridged waveguide of

b/a = 0.5, the TE1l may become the second lowest mode
when the ridge gap d is less than 20 percent of the waveguide
width a and the ridge thickness s is less than 35 percent of a.
However, in the case of single-ridged waveguide with aspect
ratio b/a = 0.45, the TE1l has a higher cutoff frequency than
the TE20. Bandwidth curves are shown in Fig. 5(a) and (b)

for double- and single-ridged guides, respectively.

B. Attenuation and Impedance

In various ridged waveguide component or antenna feed
designs, knowledge of waveguide attenuation and waveguide
impedance is necessary. The waveguide attenuation constant
is shown in Fig. 6(a) and (b), where the attenuation constant a
defined in (20) is normalized with R. (wall surface resistance
per unit square), q (free space wave impedance), and a
(waveguide width). It is evident that smaller ridge gaps or
larger thicknesses lead to larger attenuation.

The waveguide impedance defined in (21) for both double-
and single-ridged waveguides is first computed at a fixed
frequency, by varying the ridge dimensions. Fig. 7(a) shows
the impedance of a double-ridged waveguide. The operation
frequency is fixed at ~ times of the TEIO cutoff frequency.
The impedance can be substantially low if the ridge gap is
very narrow. Fig. 7(b) is the impedance of a single-ridged
waveguide at the same reference frequency.

C. Field Distribution

The task to pursue the solution of modal field distribution
at different frequencies with different ridge parameters is

certainly vast. Limited by the size of this paper, only a
few typical modal field patterns are presented here. The
contour plot technique is used to draw contour electric field
lines, as shown in Fig. 9(a)–(c), in which the center of the

contours represents the location of peak E-fields and dense
lines represent rapid variations of E-fields.

The E-field contours of the TE1o, TEzo, T,%o, and TE1l

modes in a double-ridged guide are shown in Fig. (a)–(d)

where the ridge gap d and thickness s are 15 and 30 percent,
respectively, of the waveguide width a. The electric field of
the TEIO is very concentrated between ridge gaps, while the

electric field of the TE30 mode is distributed in two cavities.
It is also seen that TE1l is a trough mode. In order to see the
effect of the s/a and d/b ratios on the field patterns, Fig. 9
is provided to show the field distributions of TEIO mode in

various double-ridged waveguides.

IV. CONCLUSION

The surface magnetic field integral equation is used to ana-
lyze ridged waveguides in an efficient way. The formulation
is flexible in handling various waveguide cross sections and
ridge shapes, and accurate in determining waveguide modes;
and it remains simple in numerical solution with pulse basis
functions.

In a double-ridged waveguide, the second lowest mode may
not be the TEZO mode, as taken for granted previously, and
the bandwidth is estimated to be smaller in a waveguide with
narrow ridge gap, compared to existing results.

The ridged waveguide attenuation is proportional to the
ridge thickness, and inversely proportional to the ridge gap.
When the ridge gap d/b is less than 0.2 and the frequency is
well above cutoff (~ ~ 1.73$c), the attenuation increases only
slightly with frequency. However, the waveguide impedance
is proportional to the ridge gap, and inversely proportional to
the ridge thickness. A low impedance, which is compatible
with a coaxial cable, can be achieved by decreasing the ridge
gap d/b to less than 0.1. Unfortunately, a low impedance is
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always coupled with a high attenuation, and a tradeoff has to

be considered in design practice.

The multiridged and arbitrarily shaped waveguides can be

analyzed by the same technique. The formulation and numer-

ical results on general types of quadruple-ridged waveguides

(such as square, diagonal, and circular waveguides) will be
presented in a later publication.
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